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Abstract
Non-Hermitian Hamiltonians appearing as operator realizations of
P-symmetric (PT -symmetric in physical literature) zero-range singular
perturbations of one-dimensional Schrödinger operators are studied. In
particular, Hamiltonians with a real spectrum are described in terms of
parameters of singular perturbations and, moreover, it is shown that only part
of them are similar to Hermitian ones. In this case, they can be used as exactly
solvable models of PT -symmetric quantum mechanics.

PACS numbers: 02.30.Tb, 03.65.Db
Mathematics Subject Classification: 47A55, 81Q05, 81Q15

1. Introduction

Let A0 = −d2/dx2 be the second derivative operator with the domain D(A0) = W 2
2 (R) acting

in the space L2(R).
A one-dimensional Schrödinger operator corresponding to a general zero-range potential

at the point x = 0 can be given by the expression

− d2

dx2
+ a〈δ, ·〉δ(x) + b〈δ′, ·〉δ(x) + c〈δ, ·〉δ′(x) + d〈δ′, ·〉δ′(x), (1)

where δ and δ′ are, respectively, the Dirac δ-function and its derivative (with support at 0) and
a, b, c, d are complex numbers (see, e.g. [1, 2]).

The aim of this paper is to study exactly solvable Hamiltonians corresponding to (1) for
the case where the singular potential

V = a〈δ, ·〉δ + b〈δ′, ·〉δ + c〈δ, ·〉δ′ + d〈δ′, ·〉δ′,
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in (1) is not symmetric in the standard sense but satisfies the condition of P-symmetry

PV ∗ = VP, (2)

where the adjoint V ∗ is determined by the relation 〈V u, v〉 = 〈u, V ∗v〉 (
u, v ∈ W 2

2 (R)
)

and
P is the space parity operator Pf (x) = f (−x) in L2(R).

Assuming formally that T V = V ∗T , where T is the complex conjugation operator
T f (x) = f (x), we can reformulate (2) as PT V = VPT and, hence, expression (1) is
PT -symmetric. From this point of view, the corresponding non-Hermitian operator
realizations of (1) can be considered as PT -symmetric Hamiltonians in the framework of
the intensively developing PT -symmetric quantum mechanics (see, e.g., [6–8]). However,
for such Hamiltonians, we prefer to use the notation P-Hermitian, which is more convenient
from the mathematical point of view.

In section 2, using the Albeverio–Kurasov approach [2–4], we obtain a simple description
of operator realizations of (1) in terms of parameters a, b, c, d of the singular potential V .
We remark that, in contrast to the case of symmetric potentials considered in [5], the obtained
Hamiltonians A are P-Hermitian operators in L2(R), i.e.,

PA∗ = AP, (3)

where A∗ is the adjoint of A. Such operators are point perturbations of the free Schrödinger
operator A0 = −d2/dx2 and some of them have real spectrum (like Hermitian operators). In
this case, they can be considered as P-Hermitian (PT -symmetric) exactly solvable models of
PT -symmetric quantum mechanics.

In section 3, we present necessary and sufficient conditions for the reality of the spectra of
P-Hermitian realizations of (1) in terms of parameters of the corresponding singular potentials
V . These results supplement the spectral analysis of such operators that had been carried out
in [9] without answering the question about which P-Hermitian operator corresponds to the
fixed potential V in (1).

Let A be a P-Hermitian operator realization of (1) with real spectrum. Since the notion of
P-Hermiticity of A is equivalent to the Hermiticity of A with respect to the indefinite metric

[f, g] = (Pf, g) =
∫ ∞

−∞
f (−x)g(x) dx (∀f (x), g(x) ∈ L2(R)) (4)

one can attempt to develop a consistent quantum theory for such P-Hermitian Hamiltonians.
However, in this case, we encounter the difficulty of dealing with a Hilbert space L2(R)

equipped with the indefinite metric (4). Because the norm of states carries a probabilistic
interpretation in the standard quantum theory, the presence of an indefinite metric immediately
raises problems of interpretation.

For an important class of pseudo-Hermitian Hamiltonians with unbroken spacetime
reflection symmetry (PT -symmetry) Bender, Brody and Jones [7] overcome the problem
of indefinite metric by the construction of a certain previously unnoted symmetry C inherent
to all pseudo-Hermitian Hamiltonians of such a type.

In analogy with [7], we will say that a P-Hermitian operator A acting in L2(R) possesses
the property of C-symmetry if there exists a bounded linear operator C in L2(R) such that the
following conditions are satisfied:

(a) AC = CA;
(b) C2 = I ;
(c) the sesquilinear form (f, g)C ≡ [Cf, g] (∀f, g ∈ L2(R)) determines an inner product in

L2(R) that is equivalent to the initial one.
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The existence of a C-symmetry for a P-Hermitian operator A ensures unitarity of the
dynamics generated by A in the norm ‖·‖2

C = (·, ·)C and it is equivalent to the fact that A is
similar to a Hermitian operator (see proposition 1).

Thus, in order to obtain the description of all P-Hermitian Hamiltonians A generated by
(1) with previously unnoticed symmetries C it is sufficient to describe the set of all A that are
similar to Hermitian operators.

In section 4, we present simple necessary and sufficient conditions on the parameters of
the singular potential V under which the corresponding P-Hermitian operator A is similar to
a Hermitian one. It should be noted that some of such operators possess generalized complex
eigenvalues, a property that is impossible for the standard Hermitian realizations of (1) with
symmetric potentials V . Thus, among the P-Hermitian operator realizations of (1) there exist
operators similar to Hermitian one but their spectral properties cannot be described in terms
of Hermitian realizations of (1).

In section 5, we find the explicit form ofC-symmetries for someP-Hermitian Hamiltonians
generated by (1) in terms of parameters of the singular potential V .

We remark that a previously unnoted symmetry C depends on the choice of A and finding
C in explicit form for various classes of pseudo-Hermitian operators is a non-trivial problem
that, as a rule, requires additional assumptions on the structure of spectrum (see e.g. [8], where
the case of diagonalizable P-Hermitian Hamiltonians with discrete spectrum was considered).
However, the spectral restrictions can be omitted if we consider P-Hermitian Hamiltonians
generated by (1).

Let us make a remark about notation. D(A) and A �D denote the domain of a linear
operator A and the restriction of A onto a setD, respectively. The symbol Wp

2 (R) (p ∈ {−2, 2})
denotes the usual Sobolev space, i.e. W

p

2 (R) is the space of tempered distributions with
a Fourier transform which is square integrable with respect to the measure with density
(1 + |x|2)p/2.

2. P-Hermitian operator realizations

It is clear that the heuristic expression (1) determines the symmetric operator

Asym = − d2

dx2
, D(Asym) = {

u(x) ∈ W 2
2 (R)

∣∣ u(0) = u′(0) = 0
}

(5)

in L2(R). Thus, any proper extension A of Asym (i.e., Asym ⊂ A ⊂ A∗
sym) can be considered

as an operator realization of (1) in L2(R).
In order to specify more exactly which a proper extension A of Asym corresponds to (1)

with a given P-symmetric singular potential V , we will use an approach suggested in [3, 4].
The main idea consists in the construction of some regularization AR of (1) that is well defined
as an operator from D(A∗

sym) = W 2
2 (R\{0}) to W−2

2 (R). Then, the corresponding operator
realization A of (1) is determined as follows:

A = AR�D(A), D(A) = {f ∈ D(A∗
sym) | ARf ∈ L2(R)}. (6)

To obtain a regularization of (1) it suffices to extend the distributions δ and δ′ onto
W 2

2 (R\{0}). The most reasonable way (based on preserving of initial homogeneity of δ and
δ′ with respect to scaling transformations, see, for details, [2, 12]) leads to the following
definition:

〈δex, f 〉 = f (+0) + f (−0)

2
, 〈δ′

ex, f 〉 = −f ′(+0) + f ′(−0)

2
(7)
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for all f (x) ∈ W 2
2 (R\{0}). In this case, the regularization of (1) onto W 2

2 (R\{0}) has the form

AR = − d2

dx2
+ a〈δex, ·〉δ(x) + b〈δ′

ex, ·〉δ(x) + c〈δex, ·〉δ′(x) + d〈δ′
ex, ·〉δ′(x),

where −d2/dx2 acts on W 2
2 (R\{0}) in the distributional sense.

Extending P onto W−2
2 (R), one gets Pδ = δ and Pδ′ = −δ′. These relations and (1)

imply that the condition of P-symmetry (2) is equivalent to the following restrictions on the
parameters of V :

a, d are real and c = −b.

In what follows, we assume that V satisfies such conditions.

Theorem 1. The operator realization of (1) with P-symmetric potential V is a P-Hermitian
operator A that coincides with the restriction of A∗

sym = −d2/dx2 onto the domain

D(A) = {
f (x) ∈ W 2

2 (R\{0}) ∣∣ T�0f = �1f
}
, T =

(
a b

−b d

)
, (8)

where

�0f = 1

2

(
f (+0) + f (−0)

−f ′(+0) − f ′(−0)

)
, �1f =

(
f ′(+0) − f ′(−0)

f (+0) − f (−0)

)
. (9)

Proof. Let us consider the functions

h1(x) =
{

e−x, x > 0
ex, x < 0

h2(x) =
{−e−x, x > 0

ex, x < 0.

It is clear that any function f ∈ W 2
2 (R\{0}) can be represented as f (x) = u(x) +∑2

j=1 ξjhj (x),
(
u ∈

0

W 2
2 (R), ξi ∈ C

)
and

− d2

dx2
h1(x) = −h1(x) + 2δ(x), − d2

dx2
h2(x) = −h2(x) + 2δ′(x). (10)

Applying AR to f (x) and taking into account (7), (9), (10), and the relations

f ′(+0) − f ′(−0) = −2ξ1, f (+0) − f (−0) = −2ξ2,

we obtain

ARf (x) = − d2

dx2
u(x) −

2∑
j=1

ξjhj (x) + 2ξ1δ(x) + 2ξ2δ
′(x) +

1

2
(f (+0)

+ f (−0))(aδ(x) − bδ′(x)) − 1

2
(f ′(+0) + f ′(−0))(bδ(x) + dδ′(x))

= A∗
symf (x) + (δ(x), δ′(x))(T�0f − �1f ).

This equality and (6) imply that the operator realization A of (1) is defined by (8).
Let us show that A satisfies the condition of P-Hermiticity (3). We start from the

observation that P commutates with A∗
sym and, hence, condition (3) is equivalent to the

relation PD(A∗) = D(A).
Using (8), it is easy to verify that

D(A∗) = {
f ∈ W 2

2 (R\{0}) ∣∣ T
t
�0f = �1f

}
, T

t =
(

a −b

b d

)
. (11)



One-dimensional Schrödinger operators with P-symmetric zero-range potentials 4979

The validity of PD(A∗) = D(A) immediately follows from (8) and (11) if we take into
account that GT = T

t
G and

�0Pf = G�0f, �1Pf = G�1f, ∀f ∈ D(A∗
sym),

where G = (1 0
0 −1

)
. Thus A is a P-Hermitian operator. Theorem 1 is proved. �

Remarks.

1. A similar approach to the definition of Hermitian operator realizations in terms of mean
values �0f and jumps �1f of functions f (x) ∈ W 2

2 (R\{0}) has recently been suggested
by Albeverio and Nizhnik [13].

2. Another description of P-Hermitian extensions of Asym (PT -self-adjoint point
perturbations) was obtained in [9] with the use of boundary operators

�0f =
(

f (−0)

f ′(−0)

)
, �1f =

(
f (+0)

f ′(+0)

)
.

3. Spectral analysis

It was shown in [9] that the continuous spectrum of any P-Hermitian extension A of Asym

coincides with [0,∞) and only the point spectrum of A can be situated in C\R+.
Using theorem 1, we can supplement the results of [9] and to obtain a description of

non-real spectra of P-Hermitian operator realizations of (1) in terms of the parameters a, b, d

of the singular potential V .

Theorem 2. The P-Hermitian operator A defined by (8) has points of non-real spectrum if
and only if one of the following conditions is satisfied:

(i) D ≡ ((|b| + 2)2 + ad)((|b| − 2)2 + ad) < 0, (4 − |b|2 − ad)d > 0;
(ii) a = d = 0, |b| = 2.

Condition (i) corresponds to the case where A has two non-real eigenvalues, which are
conjugate to each other. Condition (ii) describes the situation where any point z ∈ C\R+ is
an eigenvalue of A.

Proof. Let us denote by τ the square root of the energy parameter z = τ 2 determined uniquely
by the condition Im τ > 0 and consider the functions

h1τ (x) =
{

eiτx, x > 0
e−iτx, x < 0

h2τ (x) =
{−eiτx, x > 0

e−iτx, x < 0
(12)

that form a basis of ker(A∗
sym − zI), where z = τ 2 runs C\R+. It is clear that z belongs to

the point spectrum of A if and only if there exists a function f ∈ ker(A∗
sym − zI) ∩ D(A).

Representing f (x) in the form f (x) = c1h1τ (x) + c2h2τ (x) (ci ∈ C) and substituting this
expression into (8) we arrive at the conclusion that z is an eigenvalue of A if and only if the
system of equations

(a − 2iτ)c1 + ibτc2 = 0 bc1 − (idτ + 2)c2 = 0

has a nontrivial solution c1, c2. This is possible if the determinant of the coefficient matrix of
the system is equal to zero, i.e.,

2dτ 2 + i(ad + |b|2 − 4)τ + 2a = 0. (13)
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For d �= 0, the roots of (13) are

τ1,2 = i
4 − |b|2 − ad ± √

D

4d
, (14)

where D is determined above. Thus, for d �= 0, condition (i) is necessary and sufficient for
the existence of two non-real eigenvalues z1,2 = τ 2

1,2 of A, which are conjugate to each other.
Similarly, for d = 0, condition (ii) is necessary and sufficient for the existence of non-real

eigenvalues. In this case, the left-hand side of (13) vanishes and, for any τ(Im τ > 0),
a nontrivial solution of the system above can be chosen as follows c1 = b, c2 = |b|.
Thus, any point z = τ 2 ∈ C\R+ is an eigenvalue of A. The corresponding eigenfunction
fz(x) = bh1τ (x) + |b|h2τ (x) takes the form

fz(x) =
{
(b − |b|) eiτx, x > 0
(b + |b|) e−iτx, x < 0.

Theorem 2 is proved. �

Let us consider a P-Hermitian operator A defined by (8) where the parameters a, b, d

satisfy the inequalities

D < 0, (4 − |b|2 − ad)d < 0. (15)

We remark that the condition D < 0 ensures d �= 0. Hence, (14) determines the roots
τ1,2 of equation (13). In this case, τ1,2 lie on the nonphysical sheet Im τ � 0 and they do not
determine eigenvalues z1,2 = τ 2

1,2 of A because the corresponding eigenfunctions

fzj
(x) =




(
1 − b

idτj +2

)
eiτj x, x > 0(

1 + b
idτj +2

)
e−iτj x, x < 0

j = 1, 2

do not belong to L2(R).
Thus, any P-Hermitian operator A defined by (8) with additional condition (15) on the

parameters a, b, d has continuous spectrum on [0,∞) and the pair of generalized complex
eigenvalues z1,2 in the sense that the corresponding eigenfunctions fz1,2(x) satisfy at the origin
the boundary conditions that determine A but fz1,2 �∈ L2(R).

In the next section, we show that any P-Hermitian operator A of such a type is similar
to a Hermitian one. At the same time, it is impossible to construct standard Hermitian
realizations of (1) having generalized complex eigenvalues. Let us explain this fact in more
details. Indeed, if V is a symmetric singular potential (i.e., V ∗ = V ), then its parameters
a, b, c, d satisfy the conditions a, d ∈ R, c = b and the corresponding Hermitian operator

realization A of (1) is defined by (8), where T = (
a b

b d

)
. For such a Hermitian operator A,

repeating the proof of theorem 2, we conclude that z = τ 2 is an eigenvalue of A if and only if
2dτ 2 + i(ad −|b|2 −4)τ +2a = 0. Since the roots r1,2 of this equation are purely imaginary for
any choice of a, b, d, we get that A cannot have generalized complex eigenvalues z1,2 = τ 2

1,2.
Thus, the study of P-Hermitian operator realizations of (1) allows one to obtain exactly

solvable Hamiltonians with properties that cannot be described with the use of standard
Hermitian operator realizations of (1).
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4. Conditions of similarity

4.1. Auxiliary statements

We recall that an operator A is similar to a Hermitian operator H if there exists an invertible
bounded operator Z such that H = ZAZ−1. If Z is a uniformly positive6 Hermitian operator,
then, setting F = Z2, it is easy to verify the following statement:

Lemma 1. If there exists a bounded uniformly positive Hermitian operator F such that

A∗F = FA, then A is similar to the Hermitian operator H = √
FA

√
F

−1
.

At the present time, there are various approaches to the study of the problem of
similarity. One of them is based on a general integral-resolvent criterion of similarity obtained
independently in [10, 11]. This criterion is especially useful when A is a finite-dimensional
perturbation of a Hermitian operator (see, e.g., [11, 14]) and for the case of P-Hermitian
operators it can be written as follows:

Theorem 3. A P-Hermitian operator A acting in L2(R) is similar to a Hermitian one if and
only if the spectrum of A is real and there exists a constant M such that

sup
ε>0

ε

∫ ∞

−∞
‖(A − zI)−1g(x)‖2 dξ � M‖g(x)‖2, z = ξ + iε, ∀g ∈ L2(R),

where the integral is taken along the line z = ξ + iε (ε > 0 is fixed).

In order to apply theorem 3, we need an explicit form of the resolvent (A − zI)−1.

Lemma 2. Let A be a P-Hermitian operator defined by (8) and let A0 = −d2/dx2,
D(A0) = W 2

2 (R) be the free Schrödinger operator. Then, for all g± ∈ L2(R±) and for
all z = τ 2 from the resolvent set ρ(A) of A,

(A − zI)−1g±(x) = (A0 − zI)−1g±(x) + c1±(τ )h1τ (x) + c2±(τ )h2τ (x), x ∈ R,

where hjτ (x) are defined by (12) and

c1±(τ ) = iF±(τ )

τ

(
−1 +

2dτ 2 − 2iτ(2 ± b)

p(τ)

)
,

c2±(τ ) = ± iF±(τ )

τ

(
−1 +

−2iτ(2 ± b) + 2a

p(τ)

)
,

where F±(τ ) = 1
2

∫
R

e±iτsg±(s) ds and p(τ) = 2dτ 2 + i(ad + |b|2 − 4)τ + 2a.

Proof. Since A and A0 are proper extensions of Asym and hjτ (x) (j = 1, 2) form a basis of
ker(A∗

sym − zI), we get

(A − zI)−1g(x) = (A0 − zI)−1g(x) + c1(τ )h1τ (x) + c2(τ )h2τ (x), ∀g ∈ L2(R),

where cj (τ ) are two parameters to be calculated.
Let us rewrite the latter equality as follows:

f (x) = f0(x) + c1(τ )h1τ (x) + c2(τ )h2τ (x), (16)

where f (x) = (A − zI)−1g(x) ∈ D(A) and f0(x) = (A0 − zI)−1g(x) ∈ D(A0) = W 2
2 (R).

6 A Hermitian operator Z is called uniformly positive if there exists m > 0 such that Z � mI .
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It follows from (9), (12) and (16) that

�0f =
(

f0(0)

−f ′
0(0)

)
+

(
c1(τ )

iτc2(τ )

)
, �1f = 2

(
iτc1(τ )

−c2(τ )

)
Substituting the values of �jf into (8) and solving the obtained equation with respect to

cj (τ ), we get(
c1(τ )

c2(τ )

)
= −1

p(τ)

(
iτ(|b|2 + ad) + 2a 2b

2ibτ |b|2 + ad − 2d iτ

) (
f0(0)

−f ′
0(0)

)
. (17)

Recalling the well-known formula

f0(x) = (A0 − zI)−1g(x) = i

2τ

∫
R

eiτ |x−s|g(s) ds,

we obtain (
f0(0)

−f ′
0(0)

)
= 1

2

∫
R

e±iτsg±(s) ds

(
i/τ
∓1

)
= F±(τ )

(
i/τ
∓1

)
,

where g = g− ∈ L2(R−) or g = g+ ∈ L2(R+).
Now, to complete the proof of lemma 2, it suffices to substitute the obtained values of

f0(0) and f ′
0(0) into (17) and carry out the trivial transformations. �

4.2. Conditions of similarity

Theorem 4. Let A be a P-Hermitian operator realization of (1) defined by (8) and let the
corresponding parameters a, b, d satisfy one of the following conditions:

(i) D < 0, (4 − |b|2 − ad)d = 0;
(ii) D = 0, (4 − |b|2 − ad)d = 0;

(iii) D = 0, (4 − |b|2 − ad)d > 0, b �= 0,

where D = ((|b| + 2)2 + ad)((|b| − 2)2 + ad). Then the operator A has real spectrum (except
the extremal case a = d = 0, |b| = 2 (see theorem 2)) but A is not similar to a Hermitian
operator.

Proof. If parameters a, b, d satisfy one of the conditions (i)–(iii) of theorem 4, then they
cannot satisfy conditions of theorem 2 (except the extremal case a = d = 0, |b| = 2). Hence,
the corresponding operator A defined by (8) has only a real spectrum.

Let us assume that such an operator A is similar to a Hermitian one. Then, for all
g(x) ∈ L2(R) and z = τ 2 ∈ C\R,

‖((A − zI)−1 − (A0 − zI)−1)g(x)‖2 � M

(Im z)2
‖g(x)‖2, (18)

where M is a constant independent of g(x) and z. In particular, inequality (18) will be true if
we put g = g+ or g = g−, where

g+(x) =
{

e−iτx, x > 0
0, x < 0,

g−(x) =
{

0, x > 0
eiτx, x < 0

In these cases, using lemma 2 and taking into account that

‖g±(x)‖2 = 1

2(Im τ)
, ‖hjτ (x)‖2 = 1

Im τ
, F±(τ ) = 1

4(Im τ)
,

and (Im z)2 = 4(Im τ)2(Re τ)2 we can rewrite (18) as follows

�±(τ ) � 2M, ∀τ ∈ L = {Im τ > 0, Re τ �= 0},
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where

�±(τ ) = (Re τ)2

|τ |2


∣∣∣∣1 − 2dτ 2 − 2iτ(2 ± b)

p(τ)

∣∣∣∣
2

+

∣∣∣∣∣1 − −2iτ(2 ± b) + 2a

p(τ)

∣∣∣∣∣
2



are continuous functions on L. Thus, the property of A to be similar to a Hermitian operator
implies the uniform boundedness of �+(τ ) and �−(τ ) for all τ ∈ L.

Assume that the parameters a, b, d satisfy condition (i) of theorem 4. Then, by virtue of
(14), the roots τ1,2 of p(τ) are real and have the form τ1,2 = ±√|D|/4d. In this case, the
functions �+(τ ) and �−(τ ) tend to infinity in a neighbourhood at least one of the points τ1

and τ2. Thus, if condition (i) holds, then the operator A cannot be similar to an Hermitian one.
Considering similarly the cases where condition (ii) or (iii) is true, we arrive at the

conclusion that at least one of the functions �±(τ ) is not uniformly bounded on L. Thus A is
not similar to a Hermitian operator. Theorem 4 is proved. �

Analysing the conditions for parameters a, b, d in theorems 2 and 4, it is easy to see that
the other possible relations between a, b, d can be written as follows:

(i) b = 0;
(ii) D > 0, b �= 0;

(iii) D < 0, (4 − |b|2 − ad)d < 0;
(iv) D = 0, (4 − |b|2 − ad)d < 0, b �= 0;

It turns out that conditions (i)–(iv) are necessary and sufficient for the similarity of the
corresponding P-Hermitian operator A defined by (8) to a Hermitian one. Indeed, in case (i),
the matrix T appearing in theorem 1 is Hermitian and, hence, the operator A defined by
(8) is also Hermitian (see [13] for details). Case (ii) will be considered in theorem 6 with
the use of lemma 1. In the theorem presented below, we prove the similarity for the cases
where A possesses generalized eigenvalues (cases (iii) and (iv)) with the use of the general
integral-resolvent criterion of similarity [10, 11].

Theorem 5. Let A be a P-Hermitian operator realization of (1) defined by (8) and let the
corresponding parameters a, b, d satisfy one of condition (iii) or (iv). Then A is similar to a
Hermitian operator.

Proof. Assume that A is a P-Hermitian operator defined by (8), where the corresponding
parameters a, b, d satisfy one of the conditions (iii), (iv). Then, by virtue of theorem 2, the
spectrum of A is real. Furthermore, by theorem 3, the existence of a constant M such that

sup
ε>0

ε

∫ ∞

−∞
‖(A − zI)−1g(x) − (A0 − zI)−1g(x)‖2 dξ � M‖g(x)‖2 (19)

(for all g ∈ L2(R)) implies the similarity of A to a Hermitian operator.
Let g(x) = g+(x) be an arbitrary function from L2(R+). Using lemma 2 and the relation

‖hjτ (x)‖2 = 1/Im τ (see the proof of theorem 4), we get

‖(A − zI)−1g+(x) − (A0 − zI)−1g+(x)‖2 = |F+(τ )|2
|τ |2(Im τ)

M+(τ ), (20)

where

M+(τ ) =
∣∣∣∣1 − 2dτ 2 − 2iτ(2 + b)

p(τ)

∣∣∣∣
2

+

∣∣∣∣∣1 − −2iτ(2 + b) + 2a

p(τ)

∣∣∣∣∣
2

.
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Let us analyse the components of the right-hand side of (20). First of all we note that
if condition (iii) or (iv) holds, then the roots τ1,2 of p(τ) belong to the lower half-plane
(Im τ < 0) and, hence, there exists a constant M1 such that M+(τ ) < M1 for all τ from the
upper half-plane (Im τ > 0).

Next, by definition (see lemma 2), F+(τ ) is the Fourier transform of g+(x) ∈ L2(R+).
Thus, F+(τ ) belongs to the Hardy space H 2(C+).

Finally, we remark that z = τ 2 is changed along the straight line z = ξ + iε (ξ ∈ R, ε > 0
is fixed) if and only if Im τ = ε/2 Re τ and ξ = (Re τ)2 − ε2/4(Re τ)2, where the variable
Re τ runs [0, +∞).

Using equality (20), the remarks above, and taking into account the Carleson embedding
theorem [15, section VIII], we get

ε

∫ ∞

−∞
‖(A − zI)−1g+(x) − (A0 − zI)−1g+(x)‖2 dξ < M1

∫ ∞

−∞

ε|F+(τ )|2
|τ |2(Im τ)

dξ

= 4M1

∫ ∞

0
|F+(τ )|2 d Re τ � M+‖F+‖2

H 2(C+) = π

2
M+‖g+(x)‖2,

where M+ is a constant independent of ε > 0 and g+(x).
Thus, inequality (19) holds for any g+(x) ∈ L2(R+). Considering similarly the case where

g(x) = g−(x) ∈ L2(R−) and choosing M = π
2 max{M−,M+}, we arrive at the conclusion

that (19) is true for all functions from L2(R) and, hence, A is similar to a Hermitian operator.
Theorem 5 is proved. �

We will say that a bounded operator K is an operator of transition if K is a Hermitian
strong contraction (i.e., K = K∗, ‖K‖ < 1) and PK = −KP .

Let us consider a collection of operators Kθ,ω acting in L2(R) and defined by the formula

Kθ,ω : (I ± P)f (x) → e±iω 1 − θ

1 + θ
(sign x)(I ± P)f (x), ∀f (x) ∈ L2(R),

where θ > 0 and ω ∈ [0, 2π). It is easy to verify that Kθ,ω is an operator of transition for any
choice of parameters θ and ω and the operator Fθ,ω = (I − Kθ,ω)(I + Kθ,ω)−1 has the form

Fθ,ωf (x) = αf (x) +
β

2
(sign x)(eiω(I + P) + e−iω(I − P))f (x), (21)

where α = (θ + 1/θ)/2 and β = (θ − 1/θ)/2.

Theorem 6. Let A be a P-Hermitian operator realization of (1) defined by (8) and let the
corresponding parameters a, b, d satisfy the conditions: D > 0, b �= 0, where D =
((|b| + 2)2 + ad)((|b| − 2)2 + ad). Then A is similar to the Hermitian operator H =
F√

θ,ωAF√
θ,ω1

, where parameters θ > 0, ω,ω1 ∈ [0, 2π) are determined by the relations

θ =
√

(|b| + 2)2 + ad

(|b| − 2)2 + ad
, eiω = |b|

b
, |ω − ω1| = π. (22)

Proof. The definition of Fθ,ω in terms of operators of transition Kθ,ω immediately implies
that Fθ,ω is a bounded uniformly positive Hermitian operator and (PFθ,ω)2 = I . But then, by
virtue of lemma 1, the equality

A∗Fθ,ω = Fθ,ωA (23)

ensures the similarity of A to the Hermitian operator H = √
Fθ,ωA

√
Fθ,ω

−1
.
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Relations (5) and (21) yield that A∗
symFθ,ω = Fθ,ωA∗

sym for any choice of parameters θ

and ω. Hence, equalities (23) and Fθ,ωD(A) = D(A∗) are equivalent. In view of relations
(PFθ,ω)2 = I , (3), and (11), the latter equality is equivalent to the following statement:

if T�0f = �1f, then T
t
�0Fθ,ωf = �1Fθ,ωf. (24)

Using (9) and (21), it is easy to verify that

�0Fθ,ωf = α�0f +
β

2

(
0 e−iω

−eiω 0

)
�1f, �1Fθ,ωf = 2β

(
0 −e−iω

eiω 0

)
�0f + α�1f

for all f ∈ W 2
2 (R\{0}). Substituting these expressions into (24), we arrive at the conclusion

that (24) is equivalent to the following matrix equality:

α(T − T
t
) = β

2
T

t
(

0 e−iω

−eiω 0

)
T − 2β

(
0 −e−iω

eiω 0

)
.

After simple calculations in the latter equality, we obtain that relation (23) holds if and
only if the following equalities are true:

βa(b eiω − b e−iω) = 0, βd(b eiω − b e−iω) = 0,

4αb eiω = β((b eiω)2 + ad) + 4β. (25)

Condition b �= 0 and the third equality in (25) imply that β �= 0. Hence, the first two
relations in (25) are true if a = d = 0 or if eiω = |b|/b. In the first case, (25) takes the form

4(θ2 + 1)b eiω = (θ2 − 1)((b eiω)2 + 4)

or θ2(b eiω − 2)2 = (b eiω + 2)2. It is easy to see that the latter relation has a positive solution
θ2 if and only if b eiω is real. So, we show that the parameter ω is determined by the relation
eiω = |b|/b in any case where b �= 0. But then the left-hand sides of the first two equalities in
(25) vanish and the third equality can be rewritten as θ2((|b| − 2)2 + ad) = (|b| + 2)2 + ad.

Obviously, the parameter θ2 can be positive if and only if D = ((|b| + 2)2 + ad)((|b| − 2)2 +

ad) > 0. In this case, θ =
√

(|b|+2)2+ad

(|b|−2)2+ad
and ω is uniquely defined by the relation eiω = |b|/b.

Thus, we establish that (23) has a unique solution Fθ,ω (in the class of operators of the
form (21)), where parameters θ and ω are determined by (22). Hence, A is similar to the

Hermitian operator H = √
Fθ,ωA

√
Fθ,ω

−1
.

Using (21), it is easy to verify that

Fθ,ωFθ,ω = Fθ2,ω and Fθ,ωFθ,ω1 = I (if |ω − ω1| = π). (26)

Thus
√

Fθ,ω = F√
θ,ω and

√
Fθ,ω

−1 = F√
θ,ω1

. Theorem 6 is proved. �

5. P-Hermitian operators with C-symmetries

Proposition 1. Let A be a P-Hermitian operator acting in L2(R). Then the following
statements are equivalent:

1. A has the property of C-symmetry.
2. A is similar to a Hermitian operator.

Proof. Let A have the property of C-symmetry. It follows from (4) and condition (c) of the
definition of C-symmetries that (f, g)C = (Ff, g), where F = PC is a bounded uniformly
positive Hermitian operator. Furthermore, by virtue of condition (a), relation P2 = I and
(3) we establish that A∗F = FA. In view of lemma 1, this means that A is similar to the

Hermitian operator H = √
PCA

√
PC−1

. So, the implication 1 ⇒ 2 is proved.
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Let a P-Hermitian operator A be similar to a Hermitian operator. In this case (see [16]),
there exist subspaces L± of L2(R) mutually orthogonal with respect to the indefinite metric
(4) that are invariant with respect to A and such that: L+ is positive with respect to (4) (i.e.,
[f, f ] > 0 for all f �= 0 from L+), L− is negative (i.e., [f, f ] < 0 for all f �= 0 from L−),
and

L2(R) = L− +̇ L+. (27)

Moreover, the projectors PL± onto L± with respect to decomposition (27) have the form

PL− = 1
2 [I − P(I − K)(I + K)−1], PL+ = 1

2 [I + P(I − K)(I + K)−1],

where K is an operator of transition in L2(R).
Let us verify that the operator

C = PL+ − PL− = P(I − K)(I + K)−1 (28)

is a C-symmetry for A. Indeed, since PL± are projectors on L±, the equality C2 = I is
obvious and the relation CA = AC follows from the invariance of A with respect to L±.
Moreover, using decomposition (27) and taking into account well-known results of the Krein
spaces theory [17], it is easy to see that the sesqulinear form (·, ·)C = [C·, ·] determines an
inner product in L2(R), which is equivalent to (·, ·). So, we show that (28) determines a
C-symmetry for A. Proposition 1 is proved. �

It follows from theorem 6 and proposition 1 that any P-Hermitian operator A defined by
(8) where parameters a, b, d satisfy the conditions D > 0, b �= 0, possesses the property of
Cθ,ω-symmetry, where Cθ,ω = PFθ,ω and parameters θ , ω are defined by (22).

Note that the 2-parameter set {Cθ,ω}ω∈[0,2π),θ>0 determines sufficiently representative
collection of C-symmetries. Namely, the following theorem was proved in [18]. For the
convenience of the reader some principal stages of the proof are recalled.

Theorem 7 ([18]). If a P-Hermitian operator realization A of (1) defined by (8) possesses the
property of C-symmetry, where C commutes with Asym, then A also possesses the property of
Cθ,ω-symmetry for a certain choice of parameters θ > 0 and ω ∈ [0, 2π).

Proof. Let A have the property of C-symmetry and AsymC = CAsym. In this case, (5) implies
that AsymF = FAsym, where F = PC. Hence, the subspaces Hγ = ker(A∗

sym + γ I) (γ > 0)

reduce F. By conditions (b), (c) of the definition of C-symmetries, F is a bounded uniformly
positive Hermitian operator and (PF)2 = I . Hence, the restriction F �Hγ

is a bounded
Hermitian operator in Hγ such that

F �Hγ
> 0 and (PF �Hγ

)2 = I �Hγ
. (29)

In view of proposition 1, A is similar to a Hermitian operator. For this reason, A

has a real spectrum and there exists γ > 0 such that −γ ∈ ρ(A) (since A is a finite
dimensional perturbation of the positive operator A0). Let us fix such γ and consider the
matrix representation Fγ = (Fij )

2
i,j=1 of F �Hγ

with respect to the orthonormal basis

h1γ (x) = 1

γ 1/4

{
e−√

γ x, x > 0
e
√

γ x, x < 0
h2γ (x) = 1

γ 1/4

{−e−√
γ x, x > 0

e
√

γ x, x < 0.

Since the matrix representation of P �Hγ
with respect to this basis coincides with

(1 0
0 −1

)
,

we can reformulate conditions (29) as follows

Fii > 0, F11F22 − |F12|2 > 0,

(
F 2

11 − |F12|2 F12(F11 − F22)

−F12(F11 − F22) F 2
22 − |F12|2

)
=

(
1 0
0 1

)
.
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Elementary analysis shows that these relations hold if and only if Fγ admits the
representation

Fγ =
(

f g e−i�

g ei� f

)
, f2 − g2 = 1, f > 0, g � 0, � ∈ [0, 2π).

(30)

On the other hand, relations (5) and (21) imply that the operators Fθ,ω also commute with
Asym and the matrix representation Fθ,ω of Fθ,ω �Hγ

with respect to {hjγ (x)}2
j=1 has the form

Fθ,ω = 1

2

(
θ + 1/θ −(θ − 1/θ) e−iω

−(θ − 1/θ) eiω θ + 1/θ

)
, θ > 0, ω ∈ [0, 2π). (31)

Comparing (30) and (31), we obtain that Fγ coincides with Fθ,ω if we put θ = f − g and
ω = � . This conclusion is a key point of the proof which enables one to use the results of [18]
in order to complete the proof of theorem 7. Namely, it follows from [18, theorem 9] that the
existence of a P-Hermitian extension A of Asym with C-symmetry, where F = PC commutes
with Asym is equivalent to the existence of a Hermitian operator M �Hγ

acting in Hγ and such
that MPF �Hγ

= FPM �Hγ
or (passing to the matrix representation) to the existence of a

Hermitian matrix M = (mij )
2
i,j=1 such that

M
(

1 0
0 −1

)
Fγ = Fγ

(
1 0
0 −1

)
M.

Replacing in the latter equality Fγ by Fθ,ω and reasoning in the inverse order, we arrive
at the conclusion that the operator A also possesses the property of Cθ,ω-symmetry, where
Cθ,ω = PFθ,ω. Theorem 7 is proved. �

Corollary 1. If a P-Hermitian realization A of (1) defined by (8) has a C-symmetry, where C
commutes with Asym, then A is similar to a Hermitian extension of Asym.

Proof. By theorem 7, the operator A also possesses the property of Cθ,ω-symmetry. In this
case, using proposition 1 and relations (26), we arrive at the conclusion that A is similar to
the Hermitian operator H = F√

θ,ωAF√
θ,ω1

. Since Fθ,ω commutes with Asym for any choice
of θ > 0, ω ∈ [0, 2π) and F√

θ,ωF√
θ,ω1

= I , the operator H is a Hermitian extension of Asym.
Corollary 1 is proved. �

In conclusion, we remark that, by proposition 1, any P-Hermitian operator A defined
by the conditions of theorem 5 also has a C-symmetry. However such a symmetry cannot
commute with Asym.

Indeed, if we suppose the commutation of C and Asym, then theorem 7 implies that A

possesses the property of Cθ,ω-symmetry and, hence, equality (23) holds for a certain θ > 0
and ω. Starting from this equality and repeating the arguments of the proof of theorem 6,
we arrive at the conclusion that the corresponding parameters a, b, d of A in (8) satisfy the
condition D > 0, which contradicts conditions of theorem 5.

The question of explicit construction of C-symmetries for P-Hermitian realizations of (1)
considered in theorem 5 is open.
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Sinha A, Lévai G and Roy P 2004 Phys. Lett. A 322 78–83
Scolarici G and Solombrino L 2002 Phys. Lett. A 303 239–42
Znojil M 1999 J. Phys. A: Math. Gen. 32 7419–28
Znojil M 2002 J. Phys. A: Math. Gen. 35 2341–52

[7] Bender C M, Brody D C and Jones H F 2002 Phys. Rev. Lett. 89 401–5
Bender C M, Brody D C and Jones H F 2003 Am. J. Phys. 71 1095–102

[8] Mostafazadeh A 2003 J. Math. Phys. 44 979–89
[9] Albeverio S, Fei S M and Kurasov P 2002 Lett. Math. Phys. 59 227–42

[10] van Casteren J 1983 Pacific J. Math. 104 241–55
Malamud M 1985 Ukrainian Math. J. 37 41–8

[11] Naboko S 1984 Funct. Anal. Appl. 18 13–22
[12] Kurasov P 1996 J. Math. Anal. Appl. 201 297–323
[13] Albeverio S and Nizhnik L 2003 A Schrödinger operator with a δ′-interaction on a Cantor set and Krein–Feller

operators Preprint 99, Universität Bonn
[14] Faddeev M and Shterenberg R 2002 Math. Notes 72 261–70

Karabash I and Kostenko I 2003 Math. Notes 74 134–9
[15] Koosis P 1980 Introduction to Hp Spaces (Cambridge: Cambridge University Press)
[16] Albeverio S and Kuzhel S 2004 Lett. Math. Phys. 67 223–38
[17] Azizov T and Iokhvidov I 1989 Linear Operators in Spaces with Indefinite Metric (Chichester: Wiley)
[18] Albeverio S and Kuzhel S 2004 η-Hermitian operators and previously unnoticed symmetries in the theory of

singular perturbations Preprint 177, Universität Bonn


